

AP9600C **Absolute Rotary Encoder**

Product data

Features

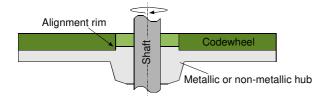
- · Highly miniaturized encoder
- Differential inductive sensing principle
- Insensitive to magnetic interference fields
- Robust against oil, water, dust, particles
- Profile-height encoder + scale < 5 mm
- Absolute position upon power-on

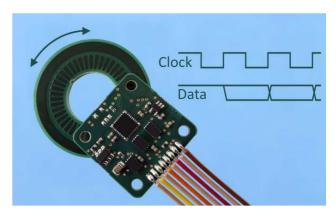
Applications

- Robotics
- · Electric motors
- Rotary tables

Key Specifications

Output format......SSI with RS422 line driver Resolution.....up to 23 bits Maximum speedup to 23'000 RPM Airgapup to 0.5 mm Supply......5 V, 70 mA Temperature-20 to 100°C


Description


The AP9600C absolute encoder kit consists of an encoder and a codewheel (Fig. 1). The encoder consists of a printed circuit board with a 2-track encoder-chip AP5603L on the frontside and a microcontroller and linedrivers on the backside. The microcontroller reads out the encoder-chip. calculates the absolute position and converts this into a binary SSI code. The output is a Serial Synchronous Interface SSI with an RS422 line driver. The codewheel is a PCB with passive copper strips arranged in 2 tracks (Fig. 8 and Table 5).

Maximum speed

The maximum speed of the encoder is user-programmable or can be programmed ex-factory according to Table 2.

The codewheels are shown in Fig. 7 and are selected in Table 5. The codewheel may be mounted on a hub, using a rim for accurate positioning in front of the encoder.

Encoder assembly

The encoder has 4 screwholes and is delivered with 4 spacers (Fig. 7) that allow an easy assembly.

Encoder cable and connector

The encoder is optionally equipped with a flat twisted-pair cable of pitch 1.27 mm and an 8-pin DIN 41651 connector. The cable length and the connector type are selected in Tables 7 and 8.

Encoder programming

The Evaluation and Programming Tool (EPT) including an interface board and the ASSIST software is available for the evaluation, linearization and programming of the encoder.

Self-calibration

With the Evaluation & Programming Tool, a self-calibration can be carried out in order to compensate eccentricity nonlinearities.

3D models

3D STEP models of the encoder, the codewheel and the distance rings are available on www.posic.com.

Frontside with encoder-chip Backside with microcontroller

Profile height Encoder + Scale < 5 mm

Specifications

Recommended Operating Conditions

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply voltage	VDD		4.75	5.0	5.25	V
Startup time	T _{start}	Codeweel must be static	100			ms
Operating Temperature	TA		-20		100	°C
SSI Clock frequency	FsSIclock		0.2	1	1.1	MHz
Airgap*	Z			0.2	0.5	mm
Eccentricity	ΔΥ				± 0.1	mm
Radial play	ΔΥ				± 0.01	mm
Axial play	ΔΖ				± 0.1	mm

^{*} For optimal performance, an airgap of 0.2 mm is recommended.

Electrical Characteristics

Electrical characteristics over recommended operating conditions, typical values at VDD = 5.0 V, T_A = 25°C.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply current	IDD	No load	55	70	85	mA
Driver differential output voltage	V _{OD}	$R_L = 100 \Omega (1)$	3.0	3.8		V
Driver common mode output	Voc	$R_L = 100 \Omega (1)$			3.2	V
Driver short circuit output current	Isc	See (1)			± 450	mA
Differential input voltage threshold	V_{TH}	-7V < V _{CM} < 12V	-200		-50	
Rise time, fall time	tr, tf	C _L = 47 pF (1)		6	15	ns

⁽¹⁾ See EIA Specification RS-422 for exact test conditions.

Encoder Characteristics

Encoder characteristics under nominal operating conditions with codewheel TPCA21-044.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
		SSI data format		23		Bits
Resolution		Noise-free resolution with: - Max speed 10 RPM - Max speed 100 RPM - Max speed 1'000 RPM		20 19 15		Bits
Accuracy		After calibration*		0.1		°m
Repeatability		Expressed in LSB of the noise-free resolution		1		LSB
Position sample latency		Physical position to start of SSI transmission			3	μs

^{*} Excluding eccentricity error

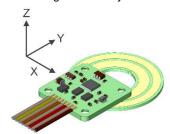


Fig. 1 Coordinate system XYZ.

Definitions

Airgap Distance between encoder and scale in Z-direction (Fig. 1)

°e Electrical degree (1 period = 360°e) °m Mechanical degree (1 revolution = 360°m)

SSI Serial Synchronous Interface

Period Center-to-center distance between adjacent copper strips

SSI Description

Connections

The SSI (Synchronous Serial Interface) uses fully RS-422 compliant 5V differential transmission channels (Fig. 2). The clock input is terminated with a 120Ω resistor inside the encoder. For reliable transmission on long cables, the user has to terminate the data lines on the controller side with a resistor corresponding to the characteristic impedance of the used cable. The balanced characteristic impedance of a .05" AWG28 7/36 twisted pair flat cable is generally in the range of 120Ω .

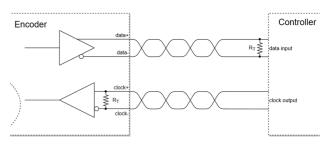


Fig. 2 SSI connections.

Transmission protocol

Bit nr.	30	29	28		8	7	6	5	4	3	2	1	0
Description	nΕ		Pos(22:0)				nW			CRC	(5:0)		

Bit	Data field	Description
30	nE	No Error 1: Position data is valid 0: Position data is not valid
29:7 Pos(22:0) Position, left aligned, transmitted MSB first		Position, left aligned, transmitted MSB first
6	nW	No Warning 1: Position data is valid 0: Position data is valid, but some operational conditions may be close to the limits and the position data may be out of specification
5:0	CRC(5:0)	Cyclic Redundancy Check. The polynomial for the CRC calculation is x^6+x+1 . The initial value is 0 and the bits are transmitted inverted.

Normal transmission

A single data frame consist of 31 bits (Fig. 3). On the leading clock edge sent by the controller, the encoder fetches the latest position data. This data is made available on the subsequent rising edges of the incoming clock signal. Once all 31 bits are sent, the data output is forced to 0 until the end of the clock time-out period. The output is forced to 1 when the time-out expires. The encoder is then ready for the transmission of new position data.

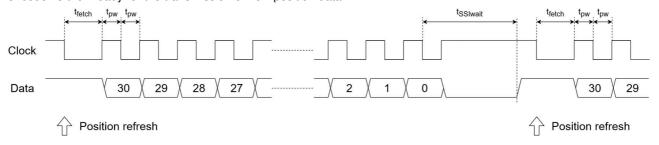


Fig. 3 SSI frame timing diagram for normal transmission.

Partial transmission

It is not mandatory to read the full 31 bit data frame. If only the first part of the frame is of interest for the controller, it can stop the transmission of the frame by holding the clock line high for a period exceeding the clock time-out. At the next falling edge of the clock, the position data will be refreshed and a new data frame started. Fig. 4 shows an example where only the first 8 bit of the frame are read.

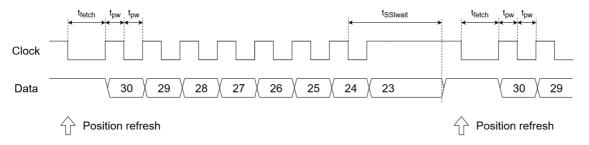


Fig. 4 SSI frame timing diagram for partial transmission, only the initial 8 bits are transmitted.

Re-transmission

The encoder also implements the SSI multiple transmission mode: if an additional clock cycle is present before the expiration of the clock time-out at the end of the message, the position information is not updated and the exact same message is repeated (Fig. 5).

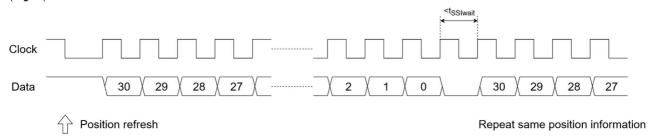


Fig. 5 SSI frame timing diagram for re-transmission of the previous data.

SSI timing characteristics

Parameter	Symbol	Remark	Min	Тур	Max	Unit
SSI Wait time	t SSIwait	Time between SSI-frames	19	20	21	μs
Position refresh time	trefresh			2	3	μs
Input clock position fetch time	t _{fetch}		450			ns
Input clock pulse width	t _{pw}		100			ns

Self-Calibration

The AP9600C encoder can carry out a self-calibration when it is connected to the Evaluation & Programming Tool EPT002 and the associated ASSIST software:

- 1) Start the ASSIST software and go to the Linearization window
- 2) Select Self Calibration and start the calibration measurement
- 3) Slowly rotate the codewheel in one direction until the software indicates that the calibration has been completed
- 4) The ASSIST software calculates a LookUp Table (LUT) based on the measured data and stores the LUT in the encoder's non-volatile memory.

The Self-Calibration needs no reference encoder and it is not required to rotate at a constant speed.

The encoder's non-volatile memory is re-programmable and therefore the self-calibration can be carried out at regular intervals.

Technical drawings

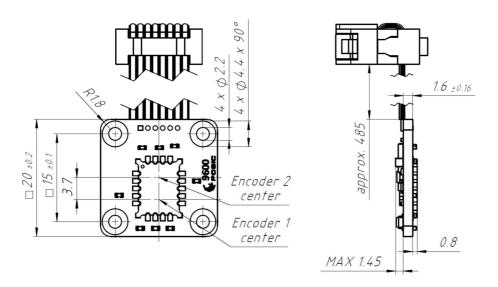
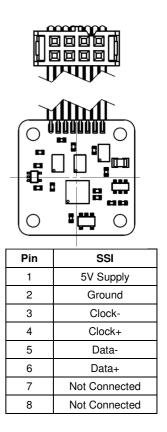



Fig. 6 Dimensions and pin-out of AP9200 encoder. Encoder 1 center must be aligned to Track 1 center (Readout Radius RR1 in Fig. 8) and Encoder 2 to Track 2 (RR2 in Fig. 8). The height of the components on the backside of the encoder is 1.45 mm maximum. Plastic distance rings of 1.6 mm height are optionally delivered with the encoder in order to mount the encoder on a flat surface without the electronic components touching the mounting-surface.

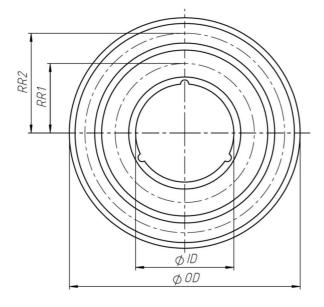


Fig. 8 Dimensions for codewheels for the AP9600C encoder. RR = Readout Radius. Encoder 1 center must be aligned to RR1 and Encoder 2 center to RR2. Values for TPCA21-044:

ID = 12 mm OD = 28.2 mm RR1 = 8.5 mm RR2 = 12.2 mm

The half-holes at the inner diameter are for alignment purposes and have a diameter of 1 mm.

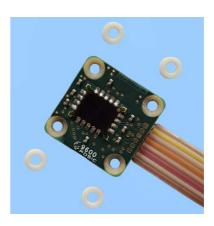


Fig. 7 Four plastic distance rings of 1.6 mm thickness are optionally (Table 6) delivered with each encoder in order to mount the encoder on a flat surface and avoid that the components on the backside touch the mounting-surface. The height of the components is 1.45 mm maximum (Fig. 6).

Ordering information

Ordering code: AP9600C-ABBCCD-EEEEE-F-GGG-HH Orientation Table 1 BB Maximum speed Table 2 Table 3 CC Interface D Table 4 Look-Up Table EEEEE Table 5 Codewheel Spacers Table 6 GGG Cable Table 7 HH Connector Table 8

Table 1: Orientation. Arrows indicate direction of movement of the scale with increasing position.

Α	Orientation		
0	Not progr. (default 0°)		
3	0°		
5	180°		

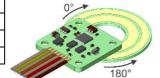


Table 2: Maximum speed with codewheel TPCA21-044

BB	Max speed (RPM)	Noise-free resolution (bits)*	Typical filter- delay (ms)
00	Not programmed		
01	13	20	26
02	26	20	13
03	52	20	6.4
04	104	19	3.2
05	207	18	1.6
06	414	17	0.8
07	828	16	0.4
80	1'656	15	0.2
09	3'313	14	0.1
21	6'625	13	0 at
22	13'250	13	constant
23	26'500	13	speed

^{*} At nominal airgap 0.2 mm

Table 3: Interface

CC	Interface
00	Not programmed (default SSI Binary)
01	SSI, Binary

Table 4: Look-Up Table (LUT)

D	Look-Up Table programmed in OTP
0	Not programmed
1	LUT according to codewheel specified in Table 5
8	Custom LUT, to be specified

Table 5: Codewheel (Fig. 8)

EEEEE	OD (mm)	# Periods		
00000	No Codewheel			
21044	28.2	12.0	44	

Table 6: Distance rings (Fig. 7)

F	Distance rings
0	No distance rings
1	Including 4 distance rings

Table 7: Cable

Table 7. Gable		
	GGG	Flat twisted pair cable
	000	No cable
	050	Length 50
	100	Length 100 cm

Cable temperature range: -20 to 80°C.

Table 8: Connector

НН	Connector
00	No connector
04	8-pin connector DIN 41651 (Fig. 6)

© Copyright 2025 POSIC. All rights reserved. No part of this document may be reproduced without the prior written consent of POSIC. Products and companies mentioned in this document may be trademarks or registered trademarks of their respective owners. Information in this document is believed to be accurate and reliable and may be changed without notice. No responsibility is assumed by POSIC for its use, nor for infringements of patents or other rights of third parties which may result from its use. Some commercial or geographical restrictions may apply to the sale of this product. No license is granted by implication or otherwise under any patent or patent rights of POSIC. In no event shall POSIC, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. POSIC products are not designed, intended, authorized or warranted to be suitable for use in life-support applications, devices or systems or other critical care applications. Inclusion of POSIC products in such applications is understood to be undertaken solely at the customer's own risk. Should a customer purchase or use POSIC products for any such unauthorized application, the customer shall indemnify and hold POSIC and its officers, employees, subsidiaries, affiliates, representatives and distributors harmless against all claims, costs, damages and attorney fees which could arise.