

ID1102L Dual Channel Linear Encoder Kit

Product data

Features

- · Highly miniaturized linear encoder
- · Differential inductive sensing principle
- Insensitive to magnetic interference fields
- Robust against oil, water, dust, particles
- · Programmable resolution and maximum speed
- · Optional with cable, connector and holder

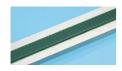
Applications

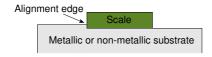
- · Linear actuators
- · Industrial / laboratory / office automation
- X-Y stages
- · Pick & Place assembly equipment
- · High-speed motion control
- · Mechatronics applications

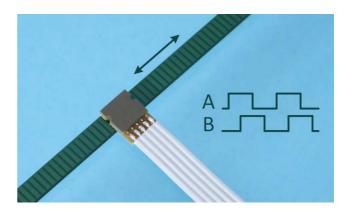
Key Specifications

Output format	A and B in quadrature
Resolution	down to 0.02 um
Maximum speed	up to 32 m/s
Airgap	up to 0.6 mm
Supply	5 V, 10 mA
Temperature	20 to 100°C

Description

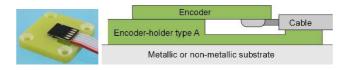

The ID1102L incremental encoder kit consists of an encoder and a linear scale (Fig. 1). The encoder is an integrated circuit in a PCB housing. It provides incremental A and B output signals in quadrature (Fig. 2). The linear scale is a PCB with passive copper strips. The orientation of the encoder is selected in Table 1.


Resolution, maximum speed and airgap

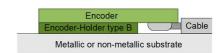

The resolution and the maximum speed of the encoder are user-programmable or can be programmed ex-factory. The resolution depends on a filter setting that limits the maximum speed of the encoder vs. the scale. The resolution also depends on the maximum distance between the encoder and the scale. The resolution and maximum speed for a certain maximum air-gap are selected in Tables 2 and 3.

Scales

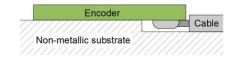
Scales with different lengths (Fig. 4) are selected in Table 5. Each scale has a backside adhesive layer and may be mounted on any substrate, using a 0.1 – 0.2 mm high alignment edge for correct positioning in front of the encoder.



Encoder holders


Different encoder holder options are available and can be selected in Table 6.

The encoder holder **type A** (Fig. 5) may be mounted on any substrate using 4 screw-holes. It has a strain relief for the cable. Holder type A is for evaluation purposes only.


The encoder holder **type B** (Fig. 3) may be mounted on any substrate. Use half-holes on encoder PCB housing and alignment pins for accurate positioning.

The encoder without holder may be mounted on nonmetallic substrates. Use half-holes on encoder housing and alignment pins for accurate positioning.

Encoder cable and connector

The encoder can be supplied with a flat cable of pitch 1.27 mm and a connector (Fig. 6). The cable length and the connector type are selected in Tables 7 and 8.

Encoder programming

The Evaluation and Programming Tool (EPT) including an interface board and the ASSIST software is available for the linearization and programming of the encoder.

3D models of encoder, holders and scales

STEP models available on www.posic.com.

Specifications

Recommended Operating Conditions

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
Operating Temperature	TA		-20		100	°C
Airgap	Z			0.2		mm
Lateral televenes and a	A.V.	TPLS01, scale width 3.7 mm			0.2	mm
Lateral tolerance scale	ΔΥ	TPLS02, scale width 4.4 mm			0.5	mm
Airgap tolerance	ΔΖ				0.1	mm

Electrical Characteristics

Electrical characteristics over recommended operating conditions, typical values at VDD = 5.0 V, TA = 25°C.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply current	IDD	No load	8	10	15	mA
Maximum output frequency	F	A/B output signals	0.8	1	1.2	MHz
High level output voltage*	Vон	I _L = 2 mA	VDD-0.5			V
Low level output voltage*	Vol	I _L = 2 mA			0.5	V
Rise time, fall time	tr, tf	C _L = 47 pF			20	ns

If A is pulled up and B pulled down during power-up, the encoder enters into a test mode with a 50 kHz square wave on all outputs.

Encoding Characteristics

Encoding characteristics over recommended operating conditions, typical values at VDD = 5.0 V, T_A = 25°C, airgap = 0.2 mm, speed = max speed/10.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Pulse width error	ΔΡ	Nominal value 180°e		10	50	°e
State width error	ΔS	Nominal value 90°e		10	60	°e
Phase shift error	ΔФ	Nominal value 90°e		10	45	°e

Linearity

For high-resolution high-precision applications, it is possible to linearize the encoder by means of a Look-Up Table (LUT) that is located inside the encoder. The LUT can be programmed in volatile or in non-volatile memory by means of the Evaluation and Programming Tool (EPT) or it can be pre-programmed by ex-factory. The LUT option is selected in Table 4.

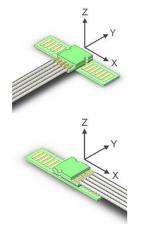


Fig. 1 Coordinate system XYZ.

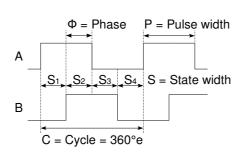


Fig. 2 Encoder output signals A and B in quadrature.

Definitions

Distance between encoder and scale in Z-Airgap direction. See Fig. 1. Cycle One A quad B period, see Fig. 2. CPP Cycles Per scale-Period. °е Electrical degree (one Cycle is 360°e) Phase shift Φ Number of electrical degrees between the center of the high state of channel A and the center of high state of channel B. Nominal 90°e. Fig. 2. Pulse width P Number of electrical degrees that an output is high during one cycle. Nominal 180°e. Number of electrical degrees between two State width S

neighboring A and B transitions. Nominal

value is 90°e. See Fig 2.

Technical drawings

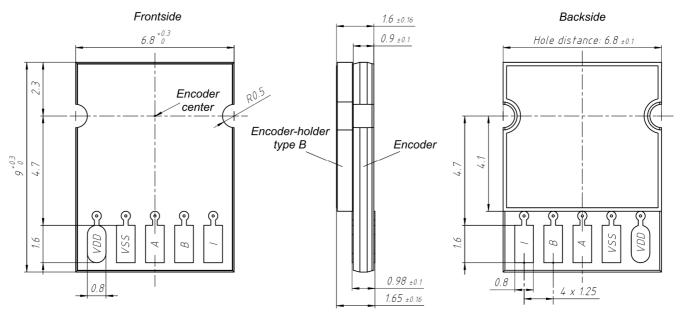


Fig. 3 Dimensions (mm) of ID1102 encoder on encoder-holder type B. The "Encoder center" must be centered with respect to the width of the linear scale (Fig. 4).

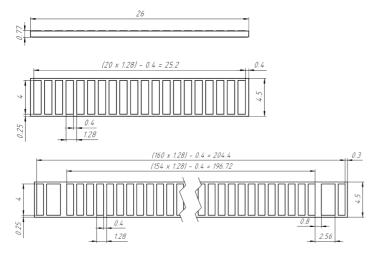
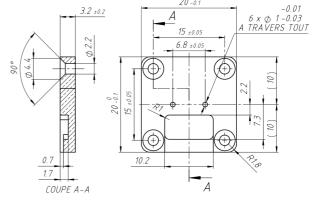



Fig. 4 Scales TPLS04-026 (top and middle) and TPLS05-205 (bottom). All dimensions in mm. Period-length is 1.28 mm. Both scales have backside adhesive. Scale thickness includes adhesive, but not the release liner. The special periods at the left and right ends of the scale are intended for another encoder and should not be used with the ID1102L.

20-0.1

Fig. 5 Dimensions (mm) of encoder-holder type A.

Cable length	
	1

Connector pin	Name	Description
1	VDD	5V Supply
2	VSS	Ground
3	Α	Α
4	В	В
5	I	Index (multiple)
6	NC	Not connected

Fig. 6 Encoder with flat cable (pitch 1.27 mm) and 6-pin connector DIN41651.

POSIC ID1102L

Ordering information

Ordering code: ID1102L-ABBCCD-EEEEE-F-GGG-HH Orientation BB Maximum speed Table 2 CC Table 3 Resolution D Look-Up Table Table 4 **EEEEE** Linear scale Table 5 Encoder holder Table 6 GGG Cable Table 7 Connector HH Table 8

Table 1: Orientation. Arrows indicate direction of movement of the scale with rising edge A prior to B.

Α	Orientation	
0	Not progr.	
3	0°	180° 90°
4	90°	
5	180°	
6	270°	0.

Table 2: Maximum speed

BB	Max speed (m/s)	Maximum value CC
00	Not programmed	
01	0.015	16
02	0.031	16
03	0.062	16
04	0.12	15
05	0.25	14
06	0.5	13
07	1	12
08	2	11
09	4	10
21	8	09
22	16	08
23	32	07

Lower Max speed leads to a lower jitter of the A/B outputs.

Table 3: Resolution

	Resoluti	ion	Maximum	Maximum
CC	Cycles per Period	μm	value BB	Airgap* (mm)
00	Not programmed			
03	2	160	23	0.6
04	4	80	23	0.6
05	8	40	23	0.6
06	16	20	23	0.6
07	32	10	23	0.6

08	64	5	22	0.5
09	128	2.5	21	0.5
10	256	1.25	09	0.4
11	512	0.63	08	0.4
12	1'024	0.31	07	0.3
13	2'048	0.16	06	0.3
14	4'096	0.078	05	0.2
15	8'192	0.039	04	0.2
16	16'384	0.020	03	0.2

^{*} Recommended airgap = 0.2 mm. Sequence of A and B transitions is correct up to Maximum Airgap, but encoding specifications may be out of range.

Table 4: Look-Up Table (LUT)

•	<u> </u>					
	D	Look-Up Table programmed in OTP				
	0 Not programmed					
	1	Standard LUT, according to scale				
8 Custom LUT, to be specified						
	9	Default LUT, no scale specified				

Table 5: Linear scale (see Fig. 4)

EEEEE	Scale	Dimensions
00000	No:	scale
04026	TPLS04	$L \times W \times T = 26 \times 4.5 \times 0.77 \text{ mm}$
05205	TPLS05	$L \times W \times T = 205 \times 4.5 \times 0.77 \text{ mm}$

Table 6: Encoder holder

F	Encoder holder
0	No holder
Α	Holder type A (Fig. 5) for evaluation only
В	Holder type B (Fig. 3)

Table 7: Cable

GGG	Cable
000	No cable
0xx	Flat ribbon cable, length xx cm

Table 8: Connector

HH	Connector
00	No connector
02	6-pin connector DIN 41651 (Fig. 6)
04	8-pin connector DIN 41651

© Copyright 2021 POSIC. All rights reserved. No part of this document may be reproduced without the prior written consent of POSIC. Products and companies mentioned in this document may be trademarks or registered trademarks of their respective owners. Information in this document is believed to be accurate and reliable and may be changed without notice. No responsibility is assumed by POSIC for its use, nor for infringements of patents or other rights of third parties which may result from its use. Some commercial or geographical restrictions may apply to the sale of this product. No license is granted by implication or otherwise under any patent or patent rights of POSIC. In no event shall POSIC, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. POSIC products are not designed, intended, authorized or warranted to be suitable for use in life-support applications, devices or systems or other critical care applications. Inclusion of POSIC products in such applications is understood to be undertaken solely at the customer's own risk. Should a customer purchase or use POSIC products for any such unauthorized application, the customer shall indemnify and hold POSIC and its officers, employees, subsidiaries, affiliates, representatives and distributors harmless against all claims, costs, damages and attorney fees which could arise.