

IT5602C Triple Channel Rotary Encoder Kit

Product data

Features

- Highly miniaturized encoder
- Differential inductive sensing principle
- · Insensitive to magnetic interference fields
- Robust against oil, water, dust, particles
- Ultra-thin encoder and codewheel (total < 2 mm)
- Optional with cable, connector and holder

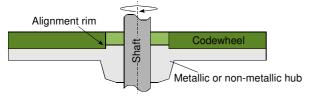
Applications

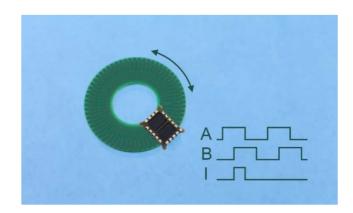
- Brushed and brushless motors
- Industrial / laboratory / office automation
- Rotary stages
- Robotics, assembly equipment

Key Specifications

Output format	A and B in quadrature + Index
Resolution	256 – 1'500'000 CPR
Maximum speed	up to 26'000 RPM
Airgap	up to 0.6 mm
Supply	5 V, 25 mA
Temperature	40 to 125°C
Codewheels	diameter 28, 53 or 73 mm

Description


The IT5602C incremental encoder kit consists of an encoder and a codewheel (Fig. 1). The encoder consists of two integrated circuits in a PCB housing. It provides incremental A and B output signals in quadrature and an Index signal, which is synchronous to A and B (Fig. 2). The codewheel is a PCB with passive copper strips.


Resolution, maximum speed and airgap

The resolution and the maximum speed of the encoder are user-programmable or can be programmed ex-factory. The resolution depends on a filter setting that limits the maximum speed of the encoder vs. the codewheel. The resolution also depends on the maximum distance between the encoder and the codewheel. Tables 2 and 3 allow the configuration of resolution and max speed for a certain maximum air-gap.

Codewheel

The codewheel is shown in Fig. 4 and is selected in Table 5. The codewheel may be mounted on a hub, using a rim of 0.1 to 0.2 mm for accurate positioning in front of the encoder.

Encoder assembly

The encoder can be assembled by reflow soldering on a rigid or flexible PCB. Optimum performances are obtained by following the recommended schematic (Fig. 5) and footprint (Fig. 6). In particular, there should be no copper traces or metal objects behind the encoder up to a distance of 3 mm in order to avoid any influence on the measured position. If this is not possible, a blank copper layer behind the encoder (rear-side of the PCB) may be envisaged and/or a linearization using the on-chip look-up table (LUT).

Encoder holder

The encoder holder **type A** is available (Fig. 7) and can be selected in Table 6. It includes the encoder and the external components according to the recommended schematic (Fig. 5). The encoder holder can be mounted on any substrate using 4 screw holes.

Encoder cable and connector

The encoder on holder can be supplied with a flat cable of pitch 1.27 mm and a connector (Fig. 7). The cable length and the connector type are selected in Tables 7 and 8.

Encoder programming

The Evaluation and Programming Tool (EPT) including an interface board and the ASSIST software is available for the linearization and programming of the encoder.

3D models of encoder, holders and codewheels

STEP and IGES 3D models available on www.posic.com.

Specifications

Recommended Operating Conditions

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
Operating Temperature	TA		-40		125	°C
Airgap	Z		0.1	0.3	0.6	mm
Radial play + eccentricity	ΔΥ				0.1	mm
Axial play	ΔZ				0.1	mm

Electrical Characteristics

Electrical characteristics over recommended operating conditions, typical values at VDD = 5.0 V, $T_A = 25^{\circ}C$.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Supply current	IDD	No load	16	25	37	mA
Operating frequency	F _{A/B}		0.9	1.2	1.5	MHz
High level output voltage	V _{OH}	$I_L = 2 \text{ mA}$	VDD-0.5			V
Low level output voltage	Vol	$I_L = 2 \text{ mA}$			0.5	V
Rise time, fall time	t _r , t _f	C _L = 47 pF			20	ns

If A is pulled up and B pulled down during power-up, the encoder enters into a test mode with a 65 kHz square wave on all outputs.

Encoding Characteristics

Encoding characteristics over recommended operating conditions, typical values at VDD = 5.0 V, T_A = 25°C, airgap = 0.2 mm, <u>speed = 10</u> RPM.

Parameter	Symbol	Remark	Min	Тур	Max	Unit
Pulse width error	ΔΡ	Nominal value 180°e		10	50	°e
State width error	ΔS	Nominal value 90°e		10	60	°e
Phase shift error	ΔΦ	Nominal value 90°e		10	45	°e

Linearity

The encoder contains a LUT (LookUp Table) to compensate the periodic non-linearity, which depends on the shape of the copper patterns on the codewheel, the airgap and the mechanical tolerances. Table 4 allows you to select a standard LUT for POSIC's standard codewheels, leading to a non-linearity of about +/- 6°e. Linearization against an accurate reference encoder allows you to reduce the non-linearity to about +/- 3°e or even better. The LUT can be programmed in volatile or in non-volatile memory by means of the Evaluation and Programming Tool (EPT) or it can be pre-programmed ex-factory. More info on linearization in the EPT User Manual.

Definitions

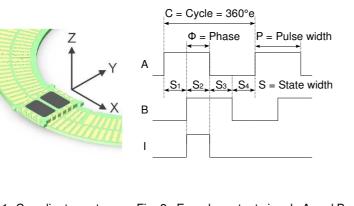


Fig. 1 Coordinate system XYZ.

Fig. 2 Encoder of in quadrature and Index.

	State width S	
output signals A and B		

Airgap	Distance between encoder and codewheel in Z-direction. See Fig. 1.
Cycle	One A quad B period, see Fig. 2.
CPP	Cycles per codewheel-period.
°e	Electrical degree (one Cycle is 360°e)
Phase shift Φ	Number of electrical degrees between the center of the high state of channel A and the center of high state of channel B. Nominal 90°e. Fig. 2.
Pulse width P	Number of electrical degrees that an output is high during one cycle. Nominal 180°e. Fig. 2.
State width S	Number of electrical degrees between two neighboring A and B transitions. Nominal value is 90°e. See Fig 2.

Technical drawings

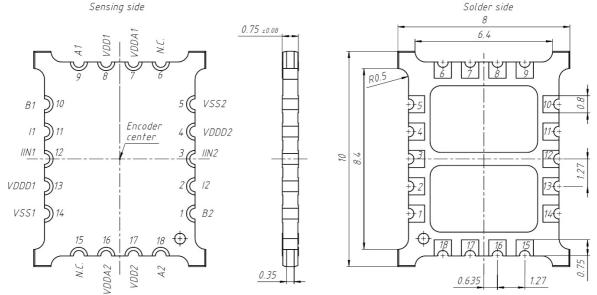
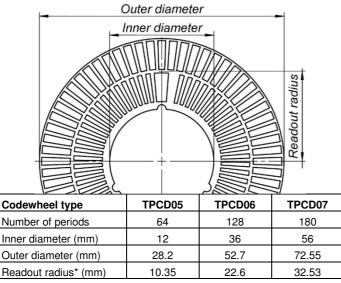
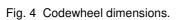




Fig. 3 Dimensions of IT3402 encoder on encoder-holder type B. The "Encoder center" must be centered with respect to the "Readout radius" of the Codewheel (Fig 4)

5V

* Readout Radius = position of Encoder Center (Fig. 3) Codewheel thickness 0.73 mm +/- 10%

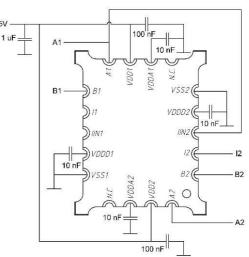


Fig. 5 Recommended schematic. The supply filter capacitor should be $1\mu F$ or more. The capacitors 100nF and 10nF should be placed close to the device. Connections A1, B1, A2, B2, I2 are required for programming and linearization.

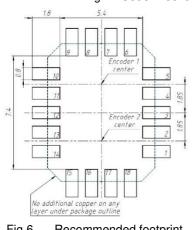
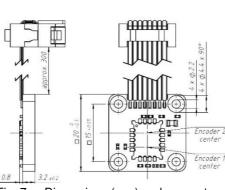
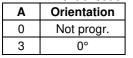



Fig 6 Recommended footprint.

Pin	Name	Description
1	VDD	5V Supply
2	VSS	Ground
3	A1	For
4	B1	programming
5	1	purposes
6	A2	Output A
7	B2	Output B
8	12	Output I

Dimensions (mm) and connector pin-out of encoder on holder type A with Fig. 7 flat cable (pitch 1.27 mm) and 8-pin DIN41651 connector.



IT5602C

Ordering information

Ordering	code: IT3402C-ABBCCD-EEEEE-F-GO	G-HH
Α	Orientation	Table 1
BB	Maximum speed	Table 2
CC	Resolution	Table 3
D	Look-Up Table	Table 4
EEEEE	Codewheel	Table 5
F	Encoder holder	Table 6
GGG	Cable	Table 7
HH	Connector	Table 8

Table 1: Orientation. Arrows indicate direction of movement of codewheel with rising edge A prior to B.

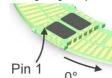


Table 2: Maximum speed

	Мах	speed (R	PM)	Мах	Time
BB		Nr. of periods on Codewheel			Time- const. (ms)
	64	128	180	CC	(113)
00	Not pr	ogrammed	1		
01	13	6	5	16	26
02	26	13	9	16	13
03	52	26	18	16	6.4
04	104	52	37	15	3.2
05	207	104	74	14	1.6
06	414	207	147	13	0.8
07	828	414	294	12	0.4
08	1'656	828	589	11	0.2
09	3'313	1'656	1'178	10	0.1
21	6'625	3'313	2'355	09	0 at
22	13'250	6'625	4'710	08	constant
23	26'500	13'250	9'420	07	speed

*Lower Max speed leads to a lower jitter of the A/B outputs.

Table 3: Resolution

1 0010 0.	110001010				
	Re	esolution CPR		Max	Max
CC	Nr. of pe	riods on Co	dewheel	value	Airgap*
	64	128	180	BB	(mm)
00	Not pro	ogrammed			
04	256	512	720	23	0.6
05	512	1'024	1'440	23	0.6
06	1'024	2'048	2'880	23	0.6
07	2'048	4'096	5'760	23	0.6
08	4'096	8'192	11'520	22	0.5

09	8'192	16'384	23'040	21	0.5
10	16'384	32'768	46'080	09	0.4
11	32'768	65'536	92'160	08	0.4
12	65'536	131'072	184'320	07	0.3
13	131'072	262'144	368'640	06	0.3
14	262'144	524'288	737'280	05	0.2
15	524'288	1'048'576	1'474'560	04	0.2
16	1'048'576	2'097'152	2'949'120	03	0.2

* Recommended airgap = 0.2 mm. Sequence of A and B transitions is correct up to Max Airgap, but encoding specifications may be out of range.

Look-Up Table (LUT) Ta Table 4:

D	Look-Up Table programmed in OTP				
U	Туре	Curvature	Airgap		
0	Not programmed				
1		Curvature as	~0.3 mm		
2	Standard LUT according to	in image	~0.1 mm		
3		in Table 1	~0.5 mm		
4	codewheel		~0.3 mm		
5	(EEEE, Table 5)	Inversed curvature	~0.1 mm		
6		cuivature	~0.5 mm		
8	Custom LUT, to be specified				
9	Default LUT, no co	dewheel specifie	ed		

Table 5: Codewheel (see Fig. 4)

	EEEEE	Codewheel	Description		
	00000	No codewheel			
	05064	TPCD05	64 periods, OD 28.2 mm		
	06128	TPCD06	128 periods, OD 52.7 mm		
	07180	TPCD07	180 periods, OD 72.6 mm		

Table 6: Encoder holder

F	Encoder holder	
0	No holder	
А	Holder A (Fig. 7)	

Table 7: Cable

GGG	Cable		
000	No cable		
0xx	Flat ribbon cable, -20 to 100°C, length xx cm		
1xx	Flat ribbon cable, -40 to 125°C, length xx cm		

Table 8: Connector

	HH	Connector*			
	00	No connector			
	04	8-pin connector DIN 41651 (Fig. 7)			
*	* Connector temperature range -20 to +100°C				

Connector temperature range -20 to +100°C

© Copyright 2024 POSIC. All rights reserved. No part of this document may be reproduced without the prior written consent of POSIC. Products and companies mentioned in this document may be trademarks or registered trademarks of their respective owners. Information in this document is believed to be accurate and reliable and may be changed without notice. No responsibility is assumed by POSIC for its use, nor for infringements of patents or other rights of third parties which may result from its use. Some commercial or geographical restrictions may apply to the sale of this product. No license is granted by implication or otherwise under any patent or patent rights of POSIC. In no event shall POSIC, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind. POSIC products are not designed, intended, authorized or warranted to be suitable for use in life-support applications, devices or systems or other critical care applications. Inclusion of POSIC products in such applications is understood to be undertaken solely at the customer's own risk. Should a customer purchase or use POSIC products for any such unauthorized application, the customer shall indemnify and hold POSIC and its officers, employees, subsidiaries, affiliates, representatives and distributors harmless against all claims, costs, damages and attorney fees which could arise.